EnergyVision 2030 FAQ
Frequently Asked Questions about EnergyVision 2030
What is EnergyVision 2030?
EnergyVision 2030 is a data-based analysis of options to expand clean energy resources in New York and the six New England states. It examines where current efforts can lead, how consumer adoption and market penetration rates can grow, and what increases in clean energy efforts are needed to attain emissions goals.
EnergyVision 2030 shows that advances in technologies that are now readily available, from heat pumps to electric cars to solar panels, create the means for states to advance a consumer-friendly energy system by increasing adoption in four key areas—grid modernization, electric generation, buildings, and transportation.
Why did Acadia Center prepare it?
Acadia Center prepared EnergyVision 2030 to provide a pathway for policymakers and others in the Northeast to show how market-ready clean energy technologies can modernize the energy systems, give consumers better options to control energy costs, and advance economic growth, while dramatically reducing climate pollution.
What are the key takeaways from the study?
States can achieve a modern clean energy system using available technologies, achieving a 45% emissions reduction by 2030, if policies are enacted now to foster and expand adoption of clean energy resources.
How does EnergyVision 2030 present the data?
EnergyVision 2030 uses the results from Acadia Center’s modeling to describe how much states should increase each clean energy technologies to shift the energy system. EnergyVision 2030 then offers detailed policy recommendations with policy options that states can use to achieve these results.
How can the information be used?
Information presented in EnergyVision 2030 shows the incremental gains needed in key clean energy areas for the region to achieve reductions in climate pollution and build robust clean energy economies. Advocates, stakeholders, and policymakers can use the information presented in EnergyVision 2030 to focus on where to expand current policies that will have the most impact or oppose policies that will move the region off this path. In many cases, states already have the policy tools they need to increase adoption of these technologies; they must simply improve and accelerate existing mechanisms to achieve the goals set in EnergyVision 2030.
What was the methodology?
EnergyVision 2030 uses the Long-range Energy Alternatives Planning System (LEAP) model from Stockholm Environment Institute to project a detailed forecast of energy consumption in all sectors and an emissions trajectory. Acadia Center incorporated the U.S. Energy Information Administration (EIA) Annual Energy Outlook (AEO) forecast, the ISO New England and New York ISO electric ’s Capacity, Energy, Loads, and Transmission (CELT) forecasts, and other data sources as appropriate. The LEAP model contains an electric dispatch model to simulate the electric system, determine the generation mix and ensure that there are sufficient resources to satisfy peak demand for power in summer and winter.
Why a 45% emissions reduction?
The scientific consensus is that to avoid the worst impacts of global warming, the U.S. needs to reduce emissions by 80% from 1990 levels by 2050. States must reduce emissions 45% by 2030 to be on a trajectory to meet that goal, i.e. if a straight line were drawn from the present emission levels to the required 2050 levels, the region would hit a 45% reduction in 2030.
Why 2030?
Most states in the region have committed to reduce emissions 80% by the year 2050 in some form, and several have goals for emissions reductions in the interim period. Building markets takes time and has cumulative impacts, so acting now is critical. 2030 is closer than it seems but offers states sufficient time to reach the clean energy levels outlined in EnergyVision 2030 if they take action in the next two to three years.
What does EnergyVision 2030 tell us about the economy?
In developing EnergyVision 2030, Acadia Center did not model how increases in clean energy technologies and processes will impact local economies. Numerous studies, including some by Acadia Center, show the economic benefits of shifting from paying for imported fossil fuels to investing in local clean energy improvements like those presented in EnergyVision 2030. These benefits include stronger local economies, local job growth, and significant consumer savings.
Does EnergyVision 2030 address calls for more natural gas as a “bridge fuel”?
EnergyVision 2030 analysis shows that the current and planned pipeline capacity in New England will be sufficient to meet the region’s needs as expanding clean generation and energy efficiency reduce demand. Adding new pipeline capacity to the region would cost ratepayers billions of dollars and would lock the region into higher-emission gas generation for decades.